Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 363, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605048

RESUMO

Translational research requires data at multiple scales of biological organization. Advancements in sequencing and multi-omics technologies have increased the availability of these data, but researchers face significant integration challenges. Knowledge graphs (KGs) are used to model complex phenomena, and methods exist to construct them automatically. However, tackling complex biomedical integration problems requires flexibility in the way knowledge is modeled. Moreover, existing KG construction methods provide robust tooling at the cost of fixed or limited choices among knowledge representation models. PheKnowLator (Phenotype Knowledge Translator) is a semantic ecosystem for automating the FAIR (Findable, Accessible, Interoperable, and Reusable) construction of ontologically grounded KGs with fully customizable knowledge representation. The ecosystem includes KG construction resources (e.g., data preparation APIs), analysis tools (e.g., SPARQL endpoint resources and abstraction algorithms), and benchmarks (e.g., prebuilt KGs). We evaluated the ecosystem by systematically comparing it to existing open-source KG construction methods and by analyzing its computational performance when used to construct 12 different large-scale KGs. With flexible knowledge representation, PheKnowLator enables fully customizable KGs without compromising performance or usability.


Assuntos
Disciplinas das Ciências Biológicas , Bases de Conhecimento , Reconhecimento Automatizado de Padrão , Algoritmos , Pesquisa Translacional Biomédica
2.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000386

RESUMO

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Assuntos
Bases de Dados Factuais , Doença , Genes , Fenótipo , Humanos , Internet , Bases de Dados Factuais/normas , Software , Genes/genética , Doença/genética
3.
Med ; 4(12): 913-927.e3, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37963467

RESUMO

BACKGROUND: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. METHODS: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. FINDINGS: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. CONCLUSIONS: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). FUNDING: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04.


Assuntos
Ontologias Biológicas , Humanos , Doenças Raras , Software , Simulação por Computador
4.
medRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503136

RESUMO

Navigating the vast landscape of clinical literature to find optimal treatments and management strategies can be a challenging task, especially for rare diseases. To address this task, we introduce the Medical Action Ontology (MAxO), the first ontology specifically designed to organize medical procedures, therapies, and interventions in a structured way. Currently, MAxO contains 1757 medical action terms added through a combination of manual and semi-automated processes. MAxO was developed with logical structures that make it compatible with several other ontologies within the Open Biological and Biomedical Ontologies (OBO) Foundry. These cover a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. We have created a database of over 16000 annotations that describe diagnostic modalities for specific phenotypic abnormalities as defined by the Human Phenotype Ontology (HPO). Additionally, 413 annotations are provided for medical actions for 189 rare diseases. We have developed a web application called POET (https://poet.jax.org/) for the community to use to contribute MAxO annotations. MAxO provides a computational representation of treatments and other actions taken for the clinical management of patients. The development of MAxO is closely coupled to the Mondo Disease Ontology (Mondo) and the Human Phenotype Ontology (HPO) and expands the scope of our computational modeling of diseases and phenotypic features to include diagnostics and therapeutic actions. MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO).

5.
NPJ Digit Med ; 6(1): 89, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208468

RESUMO

Common data models solve many challenges of standardizing electronic health record (EHR) data but are unable to semantically integrate all of the resources needed for deep phenotyping. Open Biological and Biomedical Ontology (OBO) Foundry ontologies provide computable representations of biological knowledge and enable the integration of heterogeneous data. However, mapping EHR data to OBO ontologies requires significant manual curation and domain expertise. We introduce OMOP2OBO, an algorithm for mapping Observational Medical Outcomes Partnership (OMOP) vocabularies to OBO ontologies. Using OMOP2OBO, we produced mappings for 92,367 conditions, 8611 drug ingredients, and 10,673 measurement results, which covered 68-99% of concepts used in clinical practice when examined across 24 hospitals. When used to phenotype rare disease patients, the mappings helped systematically identify undiagnosed patients who might benefit from genetic testing. By aligning OMOP vocabularies to OBO ontologies our algorithm presents new opportunities to advance EHR-based deep phenotyping.

6.
Database (Oxford) ; 20222022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36208225

RESUMO

Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in practice and describe how we envision it driving standardization efforts in our community. Database URL: https://github.com/INCATools/ontology-development-kit.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Metadados , Controle de Qualidade , Software , Fluxo de Trabalho
7.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35872606

RESUMO

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Assuntos
Biologia Computacional , Placenta , Recém-Nascido , Humanos , Feminino , Gravidez , Biologia Computacional/métodos , Fenótipo , Doenças Raras , Sequenciamento do Exoma
9.
Database (Oxford) ; 20212021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697637

RESUMO

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Metadados
10.
Nucleic Acids Res ; 49(D1): D1207-D1217, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33264411

RESUMO

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Bases de Dados Factuais , Doença/genética , Genoma , Fenótipo , Software , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Recém-Nascido , Cooperação Internacional , Internet , Triagem Neonatal/métodos , Farmacogenética/métodos , Terminologia como Assunto
11.
Account Res ; 28(1): 23-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32602379

RESUMO

Assigning authorship and recognizing contributions to scholarly works is challenging on many levels. Here we discuss ethical, social, and technical challenges to the concept of authorship that may impede the recognition of contributions to a scholarly work. Recent work in the field of authorship shows that shifting to a more inclusive contributorship approach may address these challenges. Recent efforts to enable better recognition of contributions to scholarship include the development of the Contributor Role Ontology (CRO), which extends the CRediT taxonomy and can be used in information systems for structuring contributions. We also introduce the Contributor Attribution Model (CAM), which provides a simple data model that relates the contributor to research objects via the role that they played, as well as the provenance of the information. Finally, requirements for the adoption of a contributorship-based approach are discussed.


Assuntos
Autoria , Humanos
12.
Environ Health Perspect ; 128(12): 125002, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33369481

RESUMO

BACKGROUND: A critical challenge in genomic medicine is identifying the genetic and environmental risk factors for disease. Currently, the available data links a majority of known coding human genes to phenotypes, but the environmental component of human disease is extremely underrepresented in these linked data sets. Without environmental exposure information, our ability to realize precision health is limited, even with the promise of modern genomics. Achieving integration of gene, phenotype, and environment will require extensive translation of data into a standard, computable form and the extension of the existing gene/phenotype data model. The data standards and models needed to achieve this integration do not currently exist. OBJECTIVES: Our objective is to foster development of community-driven data-reporting standards and a computational model that will facilitate the inclusion of exposure data in computational analysis of human disease. To this end, we present a preliminary semantic data model and use cases and competency questions for further community-driven model development and refinement. DISCUSSION: There is a real desire by the exposure science, epidemiology, and toxicology communities to use informatics approaches to improve their research workflow, gain new insights, and increase data reuse. Critical to success is the development of a community-driven data model for describing environmental exposures and linking them to existing models of human disease. https://doi.org/10.1289/EHP7215.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Genoma Humano , Genômica , Humanos
13.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735951

RESUMO

While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases.


Assuntos
Doença , Glicômica , Semântica , Animais , Humanos , Bases de Conhecimento , Fenótipo , Polissacarídeos/metabolismo
14.
Account Res ; 26(3): 139-156, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30841755

RESUMO

Data sharing is crucial to the advancement of science because it facilitates collaboration, transparency, reproducibility, criticism, and re-analysis. Publishers are well-positioned to promote sharing of research data by implementing data sharing policies. While there is an increasing trend toward requiring data sharing, not all journals mandate that data be shared at the time of publication. In this study, we extended previous work to analyze the data sharing policies of 447 journals across several scientific disciplines, including biology, clinical sciences, mathematics, physics, and social sciences. Our results showed that only a small percentage of journals require data sharing as a condition of publication, and that this varies across disciplines and Impact Factors. Both Impact Factors and discipline are associated with the presence of a data sharing policy. Our results suggest that journals with higher Impact Factors are more likely to have data sharing policies; use shared data in peer review; require deposit of specific data types into publicly available data banks; and refer to reproducibility as a rationale for sharing data. Biological science journals are more likely than social science and mathematics journals to require data sharing.


Assuntos
Políticas Editoriais , Disseminação de Informação/ética , Fator de Impacto de Revistas , Publicações , Ética em Pesquisa
16.
PeerJ ; 5: e3208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28462024

RESUMO

BACKGROUND: There is wide agreement in the biomedical research community that research data sharing is a primary ingredient for ensuring that science is more transparent and reproducible. Publishers could play an important role in facilitating and enforcing data sharing; however, many journals have not yet implemented data sharing policies and the requirements vary widely across journals. This study set out to analyze the pervasiveness and quality of data sharing policies in the biomedical literature. METHODS: The online author's instructions and editorial policies for 318 biomedical journals were manually reviewed to analyze the journal's data sharing requirements and characteristics. The data sharing policies were ranked using a rubric to determine if data sharing was required, recommended, required only for omics data, or not addressed at all. The data sharing method and licensing recommendations were examined, as well any mention of reproducibility or similar concepts. The data was analyzed for patterns relating to publishing volume, Journal Impact Factor, and the publishing model (open access or subscription) of each journal. RESULTS: A total of 11.9% of journals analyzed explicitly stated that data sharing was required as a condition of publication. A total of 9.1% of journals required data sharing, but did not state that it would affect publication decisions. 23.3% of journals had a statement encouraging authors to share their data but did not require it. A total of 9.1% of journals mentioned data sharing indirectly, and only 14.8% addressed protein, proteomic, and/or genomic data sharing. There was no mention of data sharing in 31.8% of journals. Impact factors were significantly higher for journals with the strongest data sharing policies compared to all other data sharing criteria. Open access journals were not more likely to require data sharing than subscription journals. DISCUSSION: Our study confirmed earlier investigations which observed that only a minority of biomedical journals require data sharing, and a significant association between higher Impact Factors and journals with a data sharing requirement. Moreover, while 65.7% of the journals in our study that required data sharing addressed the concept of reproducibility, as with earlier investigations, we found that most data sharing policies did not provide specific guidance on the practices that ensure data is maximally available and reusable.

17.
Nucleic Acids Res ; 45(D1): D865-D876, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899602

RESUMO

Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.


Assuntos
Ontologias Biológicas , Biologia Computacional , Genômica , Fenótipo , Algoritmos , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Doenças Raras/diagnóstico , Doenças Raras/etiologia , Software , Pesquisa Translacional Biomédica/métodos
18.
Genetics ; 203(4): 1491-5, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27516611

RESUMO

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Assuntos
Biologia Computacional , Estudos de Associação Genética , Genômica , Medicina de Precisão , Bases de Dados Genéticas , Humanos , Análise de Sequência de DNA , Análise de Sequência de Proteína
19.
J Biomed Semantics ; 7(1): 44, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27377652

RESUMO

BACKGROUND: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. CONSTRUCTION AND CONTENT: Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. UTILITY AND DISCUSSION: The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. CONCLUSIONS: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the CL both among developers and within the user community.


Assuntos
Ontologias Biológicas , Células , Processamento de Linguagem Natural , Sistema Nervoso/citologia
20.
PeerJ ; 1: e148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24032093

RESUMO

Scientific reproducibility has been at the forefront of many news stories and there exist numerous initiatives to help address this problem. We posit that a contributor is simply a lack of specificity that is required to enable adequate research reproducibility. In particular, the inability to uniquely identify research resources, such as antibodies and model organisms, makes it difficult or impossible to reproduce experiments even where the science is otherwise sound. In order to better understand the magnitude of this problem, we designed an experiment to ascertain the "identifiability" of research resources in the biomedical literature. We evaluated recent journal articles in the fields of Neuroscience, Developmental Biology, Immunology, Cell and Molecular Biology and General Biology, selected randomly based on a diversity of impact factors for the journals, publishers, and experimental method reporting guidelines. We attempted to uniquely identify model organisms (mouse, rat, zebrafish, worm, fly and yeast), antibodies, knockdown reagents (morpholinos or RNAi), constructs, and cell lines. Specific criteria were developed to determine if a resource was uniquely identifiable, and included examining relevant repositories (such as model organism databases, and the Antibody Registry), as well as vendor sites. The results of this experiment show that 54% of resources are not uniquely identifiable in publications, regardless of domain, journal impact factor, or reporting requirements. For example, in many cases the organism strain in which the experiment was performed or antibody that was used could not be identified. Our results show that identifiability is a serious problem for reproducibility. Based on these results, we provide recommendations to authors, reviewers, journal editors, vendors, and publishers. Scientific efficiency and reproducibility depend upon a research-wide improvement of this substantial problem in science today.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...